in

A puzzle with uniform flowers

Flower morphology is often thought to be connected with speciation. If the flower changes shape, then different pollinators have access and so genes mix less between differing members of the same species until they become two different species. Annals of Botany had an article looking at this. It makes sense as an explanation. Plants with the same flowers mate with each other. So while it’s not a surprise to go for walk and see lots of flowers that look the same, it is a surprise when you find they’re all different species. In a study in New Phytologist Thais Vasconcelos and colleagues describe the flowers of Myrcia (Myrtaceae), a genus with over 700 species with remarkably similar flowers.

Floral similarity across the Myrcia phylogeny.
Floral similarity across the Myrcia phylogeny. Image from Vasconcelos et al. 2018

Myrcia are found in the Neotropics, between Mexico and South America. They’re difficult to describe, as while the flowers might be similar, the plants are extremely diverse. The authors say: “Growth habit varies from small subshrubs of c. 10 cm to trees of 40 m, sometimes even in closely related species…”

The flowers are geared to generalist pollinators, so there’s always hope for a suitable pollinator to be around, which makes speciation a puzzle. Vasconcelos and colleagues propose allopatry as a model for speciation. Seeds are carried long distances and isolated from parent populations. Geographically isolated, populations can speciate and then other factors can cause more differences. say: “[T]here is evidence for high levels of diversity of chemical compounds in Myrcia leaves…, reflecting selective pressure from herbivores and natural enemies that is very strong in tropical areas.” The authors compare the ability of Myrcia to adapt traits to differing conditions to Croton (Euphorbiaceae).

The authors argue that Myrcia developed an optimal pollination system early on in their development, so there is not the same opportunity for pollinator-led speciation that other genera have. In this situation, the evidence of Myrcia shows that other speciation processes are in action for some plants.

Written by Alun Salt

Alun is the Producer for Botany One. It's his job to keep the server running. He's not a botanist, but started running into them on a regular basis while working on writing modules for an Interdisciplinary Science course and, later, helping teach mathematics to Biologists. His degrees are in archaeology and ancient history.

A 3D recreation of a soybean, Glycine max L. Merr., crop canopy generated using a functional-structural plant model in the software GroIMP.

Modelling leaf spectral properties in a soybean canopy

A conceptual model of events during reproduction of diploid B. stricta.

Establishing the cell biology of apomixis in Boechera