Links between leaf venation and xylem anatomy to leaf hydraulic vulnerability

The structural properties of leaf venation and xylem anatomy strongly influence leaf hydraulics, including the ability of leaves to maintain hydraulic function during drought. Blackman and colleagues examined the strength of the links between different leaf venation traits and leaf hydraulic vulnerability to drought (expressed as P50 leaf by rehydration kinetics) in a diverse group of 26 woody angiosperm species, representing a wide range of leaf vulnerabilities, from four low-nutrient sites with contrasting rainfall across eastern Australia.

Leaf anatomy
Leaf anatomy. Image: Blackman et al. 2018

For each species they measured key aspects of leaf venation design, xylem anatomy and leaf morphology. They also assessed for the first time the scaling relationships between hydraulically weighted vessel wall thickness (th) and lumen breadth (bh) across vein orders and habitats.

Across species, variation in P50leaf was strongly correlated with the ratio of vessel wall thickness (th) to lumen breadth (bh) [(t/b)h; an index of conduit reinforcement] at each leaf vein order. Concomitantly, the scaling relationship between th and bh was similar across vein orders, with a log–log slope less than 1 indicating greater xylem reinforcement in smaller vessels. In contrast, P50leaf was not related to th and bh individually, to major vein density (Dvmajor) or to leaf size. Principal components analysis revealed two largely orthogonal trait groupings linked to variation in leaf size and drought tolerance.

Blackman et al.’s results indicate that xylem conduit reinforcement occurs throughout leaf venation, and remains closely linked to leaf drought tolerance irrespective of leaf size.

Reference List

Blackman, C. J., Gleason, S. M., Cook, A. M., Chang, Y., Laws, C. A., & Westoby, M. (2018). The links between leaf hydraulic vulnerability to drought and key aspects of leaf venation and xylem anatomy among 26 Australian woody angiosperms from contrasting climates. Annals of Botany, 122(1), 59–67.