Reactions of Nicotiana species to inoculation with begomoviruses

begomovirus Some Nicotiana species are widely used as experimental hosts for plant viruses. Nicotiana species differ in ploidy levels, chromosome numbers and have diverse geographical origins. Thus, these species are useful model systems to investigate virus-host interactions, co-evolution of pathogens and hosts and the effects of ploidy level on virus resistance/susceptibility.

This research studied the responses of seven Nicotiana species to inoculation with Cotton leaf curl Multan virus (CLCuMV), a monopartite begomovirus, and Tomato leaf curl New Delhi virus (ToLCNDV), a bipartite begomovirus, both from the Indian subcontinent. All Nicotiana species supported the replication of both begomoviruses in inoculated leaves. However, only three Nicotiana species, namely N. benthamiana, N. tabacum and N. sylvestris showed symptoms when inoculated with ToLCNDV, while N. benthamiana was the only species that developed leaf curl symptoms when inoculated with CLCuMV. CLCuMV accumulated to detectable levels in N. tabacum, but plants remained asymptomatic. A previously identified mutation of RNA dependent RNA polymerase 1 was shown to be present only in N. benthamiana. The finding is in line with earlier results showing that the susceptibility of this species to a diverse range of plant viruses correlates with a defective RNA silencing-mediated host defense.

The results show that individual Nicotiana species respond differently to inoculation with begomoviruses. The inability of begomoviruses to systemically infect several Nicotiana species is likely due to inhibition of virus movement, rather than replication, and thus provides a novel model to study virus-host interactions in resistant/susceptible hosts.

Reactions of Nicotiana species to inoculation with monopartite and bipartite begomoviruses. Virology Journal 2011, 8: 475 doi:10.1186/1743-422X-8-475

Written by annbot

Ann Bot is a gestalt entity who works in the office for the Annals of Botany.

Labellar micromorphology of Zygopetalinae

Labellar micromorphology of Zygopetalinae

Image: Wikimedia Commons.

The voice of sanity (finally!)